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Abstract

What is the impact of cycling infrastructure on air quality in cities? This paper
leverages the staggered rollout of New York City’s bike share program to estimate
the effect of cycling infrastructure on air pollution concentrations. I combine the
universe of bike share trips with ground-level, high-resolution observational air
pollution measures between 2010 and 2019. Through a routing algorithm, I use the
location of bike share stations to map areas where road traffic is expected to decrease
after the introduction of bike share. I compare these areas with others where traffic
was likely unaffected using a staggered difference-in-differences strategy to retrieve
causal estimates. I find that the deployment of bike share is associated with a 3%
reduction in black carbon and 13% reduction in nitric oxide concentrations, both
pollutants associated with road traffic. Back-of-the-envelope valuation of the health
and mortality benefits associated with the reduction in nitric oxide concentrations
suggests that bike share prevented up to $327 million in social damages. In addition,
I investigate potential mechanisms and show that the introduction of bike share is
associated with a decrease in short taxi trips in areas served by bike share, which I
interpret as suggestive evidence that bike share substitutes road traffic.
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1 Introduction

Air quality is a central issue in cities: with a majority of the world’s population living in
urban areas, increased exposure to air pollutants has negative impacts on health, and is
associated with substantial social and economic costs (Carozzi and Roth, 2021). Road
transportation is an important emitter of urban air pollutants, contributing close to
40% of concentrations (EEA, 2021), and leading many cities to implement novel policies
aiming to lessen the burden of motor vehicles. Bike share is one such intervention, a
network of automated stations where public bicycles are rented for short periods and
returned. With over three thousand systems installed worldwide in the past 20 years, bike
share has become a ubiquitous sight in cities (Meddin et al., 2022). By making cycling
more convenient and cheaper, bike share has the potential to replace trips previously
made by internal combustion engine (ICE) vehicles,1 thus improving air quality. Despite
its popularity and potential, very little is known about the impact of bike share on road
transportation and air pollution.

In this paper, I identify the causal effects of bike share on air pollution concentrations
in New York City (NYC) between 2009 and 2019. While previous research has examined
the impact of other policies on pollution abatement from road transportation, such as
low-emission zones (Jiang et al., 2017; Wolff, 2014; Zhai and Wolff, 2021), congestion
charge (Green et al., 2020; Tonne et al., 2008) and the opening of new subway lines
(Chen and Whalley, 2012; Gendron-Carrier et al., 2022), the impact of cycling on air
pollution has received much less attention.

Causal evidence on the environmental impact of bike share is scarce.2 A recent set of
papers use a difference-in-differences approach to estimate the impact of bike share on
a related outcome, traffic congestion (Hamilton and Wichman, 2018; Wang and Zhou,
2017). While congestion is correlated with air quality, these studies do not estimate the
change in air pollution concentrations, which is a key outcome for assessing the health
impacts of bike share. Shr et al. (2022) are the first to estimate the impact of bike share
directly on the air quality. They combine air quality data with a bike share expansion
in Taiwan’s second-biggest city in a difference-in-differences setting, and find no or very
small reductions in air pollution concentrations one year after the expansion.

My study adds to the existing literature by providing the first estimates of the long-
run effects on air quality of a bike share program. It does so by leveraging the deployment
and expansion of the largest bike share system in North America, in the most populous
and densest city in the United States (US), New York City. Using high-resolution,
observational air quality data over ten years, I rely on a rich data set of air pollution

1This includes cars, taxis, buses and motorcycles that run on fossil-fuel engines.
2A geographic and engineering literature evaluates the impact of bike share on pollution and the

environment, but it uses non-causal methods. The main issue of these studies is their reliance on
hypothetical rates of substitution towards cycling from motor vehicles due to bike share, which may lead
to overestimating the impact of bike share on the emission of air pollutants. See Fishman et al. (2014),
Médard de Chardon (2016), Qiu and He (2018), Ricci (2015), Zhang and Mi (2018), and Zheng, Gu,
et al. (2019).
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concentrations to estimate the contribution of bike share to air quality. To the best of my
knowledge, it is the first study that provides causal estimates on the long-term impacts
of New York City’s bike share system.

The main challenges in causally estimating the relationship between bike share and
air quality are (1) the availability of high-resolution pollution data over long periods and
(2) a credible identification strategy. I address these challenges by employing the NYC
Community Air Survey as my measure of air quality, and combining it with the staggered
rollout of NYC bike share stations to identify areas treated by bike share. The NYC
Community Air Survey is a unique data set that reports the annual average concentration
of six pollutants for 9,760 300-metre by 300-metre cells covering the entirety of the city’s
extent, from 2009 to 2019. The reported concentrations for each cell are derived from
year-round observations at over one hundred monitoring stations, of which 80% are placed
randomly.3 These 300-metre cells are taken as the spatial units of observation.

While bike share is not implemented randomly,4 I show that the timing and spatial
extent of each roll-out wave are as good as random, conditional on a set of covariates.
The staggered rollout of bike share provides quasi-random variation in the substitution
of car traffic, allowing me to estimate the causal effect of bike share on air pollution
concentrations using a difference-in-differences strategy.

Key to this identification strategy is the definition of areas within the city where
bike share affected pollution concentrations. I identify areas where bike share is most
susceptible to reducing pollution using the universe of bike share trips and a routing
algorithm. The universe of trips is used to determine yearly pairs of stations, which are
defined by at least one observed bike share trip between the two stations in a given year.5

Assuming that road traffic reduction is the channel through which bike share might
impact air pollution, I compute the typical car journey between stations for each pair
using a routing algorithm, effectively capturing the areas where fewer cars are susceptible
to have been driven due to bike share. Aggregating the journeys at the 300-metre-cell
level, I obtain the spatial extent of bike share’s influence on car traffic.6 By mapping
areas where concentrations are most likely to be impacted by the deployment of bike
share, I ensure that the treatment and control groups are defined as closely as possible
to the true areas of influence of bike share, and add variation in the spatial extent of the
treated area that is less correlated with the locations of bike share stations.

3The NYCCAS has been used in epidemiological and environmental studies (Johnson et al., 2016;
Savitz et al., 2014), including the evaluation of transport policies — see for example Fry et al. (2020)
and Lovasi et al. (2022).

4To ensure success, city planners choose to deploy bike share in busy areas first, where a large demand
for transportation guarantees sufficiently high usage.

5For example, suppose there are three stations in the network, A, B and C. Assume that only three
trips were taken in a year: one from A to B, another from A to C, and one from B to A. The pairs of
stations for that year will thus be A–B, A–C, and B–A. Notice that B–C, C–A and C–B are missing and
thus not considered station pairs.

6I also investigate the intensive margin of bike share by imputing the number of bike share trips for
each journey and aggregating at the cell level. I obtain the intensity of bike share’s influence on car
traffic for each 300-metre cell.
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I use the staggered rollout of bike share stations and the associated yearly changes
in the spatial “footprint” of bike share on car traffic as my treatment variable in the
difference-in-differences strategy. In effect, I compare air pollution concentrations in cells
where car traffic is most likely impacted by bike share with cells not likely affected, before
and after the deployment and expansion of bike share. Conditional on parallel trends
in concentrations prior to treatment and no omitted policy affecting the concentrations,
this strategy delivers an average treatment effect on the treated.

I find that concentrations of pollutants associated with road transportation reduce
by 3% for black carbon (a subset of particulate matter), and 13% for nitric oxide, with
respect to pre–bike-share mean concentrations. Interestingly, I do not find an effect
on particulate matter (PM 2.5) concentrations, an air pollutant widely studied in the
literature. Results also contrast with Shr et al. (2022) who find no effect of bike share
deployment on nitric oxides and only a slight decline in carbon monoxide, which they
attribute to substitution away from two-wheeled ICE vehicles. My results highlight that
the likely source substitution is key in explaining the evolution of different pollutants.
These results are robust to alternative specifications, and hold when using the Borusyak
et al. (2022) difference-in-differences estimator accounting for variation in treatment
timing and heterogenous treatment effects (de Chaisemartin and D’Haultfœuille, 2020;
Goodman-Bacon, 2021). Back-of-the-envelope calculations show that the social benefit
from the reduction in nitric oxide reaches up to $327 million since bike share was
introduced. Brought back to an average bike share trip, riders pay on average $1.81 per
trip while reducing social damages by $3.31.

These findings are highly relevant when set in the context of the significant health
impact of air pollution. In the US, between 100 and 200 thousand yearly deaths are
associated with air pollution (Burnett et al., 2018). Furthermore, excessive concentrations
of air pollutants are linked to asthma incidence and crises, costing upwards of $135 million
per year in emergency room visits alone (Anenberg et al., 2018; Qin et al., 2021).7 Air
pollution is also negatively associated with cognitive performance, crime rates, labour
supply, labour productivity, and decision-making ability (Aguilar-Gomez et al., 2022;
Klingen and van Ommeren, 2021). As this literature highlights, the benefits associated
with improving air quality are large and broad in scope.

Road transportation is one the largest sources of air pollution: in NYC, up to 30%
of concentrations of local air pollutants are attributed to ICE vehicles (Matte et al.,
2013). Reducing the impact of road traffic has become a priority in pollution abatement
strategies of cities. The goal is for transportation users to reduce the number of trips or
kilometres driven by ICE vehicles, either by increasing the cost they pay for using road
transportation or by increasing the availability of less polluting modes of transportation.
Bike share is one such alternative mode of transportation: by implementing it on a

7Air pollution also affects other chronic respiratory diseases, leading to the yearly loss of an estimated
371 thousand disability-adjusted life years in the US (Murray et al., 2020). Other medical outcomes
affected include newborn birth weights and mortality (Currie et al., 2014).
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large scale, NYC effectively made cycling easier, more convenient and cheaper in vast
areas of the city. This sudden change in alternatives has the potential to divert road
transportation users to cycling, reducing kilometres driven and congestion, and ultimately
decreasing air pollutants associated with ICE vehicles (Leroutier and Quirion, 2022).

This paper examines the evidence on the substitution mechanism using the universe
of taxi trips and finds that, in areas served by bike share, short taxi trips (most similar to
typical bike share trips) decrease faster than longer ones, indicating that bike share did
substitute trips away from road transportation. This result echoes the research linking
bike share and congestion, which finds that congestion decreased in areas where bike
share is introduced (Hamilton and Wichman, 2018; Wang and Zhou, 2017).

This paper contributes to two main strands of the literature. First, it extends the
environmental and urban economics literature on the impacts of transportation policies
on air quality. Studies have investigated the impact of low-emission zones (Jiang et al.,
2017; Wolff, 2014; Zhai and Wolff, 2021), congestion charge (Green et al., 2020; Tonne
et al., 2008), and subway lines (Chen and Whalley, 2012; Gendron-Carrier et al., 2022).
Bike share is often portrayed as an instrument to reach pollution abatement objectives,
despite the limited evidence (DeMaio, 2009; Médard de Chardon, 2016). This paper
aims to fill the gap in our understanding of the environmental impacts of bike share, and
expand our knowledge of the impact of transport policies on air quality.

Second, an emerging “cycling” literature examines the effects of bike share on road
traffic and air quality. Papers studying the impact on road traffic combine bike share
deployment and data on congestion,8 and find that bike share and other micromobility
modes reduce congestion (Asensio et al., 2022; Hamilton and Wichman, 2018; Wang
and Zhou, 2017).9 Studies investigating the impact of bike share on air pollution rely
on hypothetical rates of substitutions from ICE vehicles to bike share, limiting their
accuracy (Fishman et al., 2014; Médard de Chardon, 2016; Qiu and He, 2018; Ricci, 2015;
Zhang and Mi, 2018; Zheng, Gu, et al., 2019). To the best of my knowledge, Shr et al.
(2022) are the first to use causal inference methods to evaluate the impact of bike share
on air quality, but find small effects on carbon monoxide and no effects on nitric oxides
concentrations in Taiwan. My paper contributes to this literature by quantifying the
causal effect on air pollution concentrations of the largest bike share program in North
America, using high-resolution, observational measures of air quality over ten years. By
presenting evidence that bike share substituted taxi service, my study also highlights
that the source of substitution is key to understanding the potential effects that bike
share may have on air quality.

The rest of the paper is organised as follows: section 2 develops the conceptual
framework linking bike share to air pollution, section 3 the empirical strategy and section
4 presents the data, section 5 presents the results, section 6 explores the substitution
mechanism, and section 7 concludes.

8Congestion is commonly measured by travel speeds of road vehicles.
9These studies also find little evidence of traffic and congestion displacement.
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2 Conceptual framework

This section introduces a simple model of transport choice that will formalise the
relationship between bike share and the propensity to choose cycling as a mode of
transport. I then describe the main channel through which bike share may change air
pollution concentrations (other channels are presented later in section 6.3).

2.1 Transport mode choice

The toy model described below is adapted from McFadden (1974b) and McFadden
(1974a), as presented in Small and Verhoef (2007). For a given trip within the city,
each individual n faces a menu of transport options j = 1, ..., J (e.g., walking, public
transport, taxi). Each option j is associated with costs c (e.g., ticket purchase, purchase
or rent of a vehicle), travel time t and ease of access a (i.e., how far does the individual
need to travel on foot to access mode j) for a given pair of origin-destination locations l.
Utility is composed of a systematic utility V (·) which incorporates the characteristics
of transport options as described above, and an unobservable component of utility ϵjn

which captures idiosyncratic individual preferences. Individuals choose the transport
option j that maximises their total utility:

Ujln = V (cjl, tjl, ajl) + ϵjn (1)

The introduction of bike share abruptly increases the systematic utility of cycling
in areas served by bike share: cycling is cheaper and more accessible. In other words,
for areas L where bike share is implemented at time T , the utility of cycling (j = J)
increases: Vt<T (cJL, tJL, aJL) < Vt≥T (cJL, tJL, aJL). For individuals to switch to cycling
after bike share, the utility associated with cycling after T needs to be greater than
utilities for all other transport options:

at t > T : UJLn > UjLn for all j ̸= J

= VJL + ϵJn > VjL + ϵjn for all j ̸= J

= ϵJn − ϵjn > VjL − VJL for all j ̸= J

If that condition is satisfied, and jt<T ≠ Jt<T (i.e., the individual was not already
cycling before bike share), then the individual will have switched to cycling thanks to
bike share.

2.2 Substitution and impact on air quality

Having established the conditions that enable an individual to switch to cycling due
to the availability to bike share, we now turn to how that translates into improving
air quality. The change in air pollution is highly dependent on the mode of transport
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used in t < T : if the individual switched from a polluting mode of transport (i.e., an
ICE vehicle), replacing those polluting trips with cycling will have an impact on air
pollution concentrations. The substitution effect of bike share towards cycling is operative
on air quality conditional on the previous mode of transport. On the other hand, if
the individual switched to cycling from public transport or walking, the effect will be
minimal.10

The key takeaway from this simple model is that the substitution mechanism implies
that pollution reduces in areas where less polluting vehicles are driven after the imple-
mentation of bike share. In section 3, I use this spatial property of the substitution effect
to construct a credible measure of where ICE traffic might have reduced thanks to bike
share. This is used as the treatment variable in the empirical analysis to identify the
causal impact of bike share on air pollution.

3 Empirical strategy

There are several empirical challenges to estimating the causal impact of bike share on air
pollution concentrations. The first challenge is that air quality depends on a multitude of
factors other than bike share. In addition, other changes that could be happening at the
same time with the expansion of bike share could also change pollution concentrations.
In this section, I present the identification challenges and how my empirical strategy
overcomes these challenges.

The main challenge to identifying the causal relationship between bike share and air
pollution is that bike share stations are not randomly placed across the city. From a city
planning perspective, this makes sense: one has to ensure that the bike share program
will be successful by reaching a large enough transport market. In the case of NYC,
that meant that bike share was deployed first in Manhattan south of 60th street and
downtown Brooklyn.11 In subsequent years, bike share was expanded north on the island
of Manhattan, and, across the East River, deeper into Brooklyn and Queens (gradual
rollout is mapped in Figure A.1).

The second identification challenge is that NYC is a large, heterogenous city, constantly
evolving. A myriad of policies that might affect pollution concentrations are enacted
every year, which could contaminate the estimate of the impact of bike share.

10Bike share may still have an indirect positive effect by decongesting public transport, which becomes
more attractive to some ICE vehicle users who now switch to now less-congested public transport, thus
reducing emissions. Another form of indirect substitution occurs when bike share and public transit
are taken as complementary modes of transport: if bike share helps connect transportation hubs (e.g.,
railway or subway stations) to final destinations, a composite bike-share–public-transit transportation
good might become a more attractive alternative to ICE vehicle users, inducing substitution.

11The highest concentration of transportation trips in NYC is located in the southern third of the
island of Manhattan, which contains Midtown and Lower Manhattan, the city’s most important business
districts. While that area as a whole is fairly heterogenous, it does contain the major business centres
and transportation hubs (Pennsylvania Station, Grand Central Station, Port Authority Bus Terminal),
and generates an important share of NYC’s transport demand.
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I address these challenges using a staggered difference-in-differences (DD) strategy.
The empirical strategy compares areas affected by bike share with areas less affected,
before and after the deployment of bike share. It takes advantage of the gradual rollout
of the bike share program to sequentially identify treated and control areas. It then
aggregates the estimated treatment effect of bike share over the several expansion waves
to yield an overall average treatment effect.

I further define the treatment indicator by carefully identifying the areas where bike
share is expected to affect pollutant concentrations the most, making it is less sensitive
to the placement of bike share stations. As discussed below in greater detail, I define the
treatment areas as areas where fewer cars are expected to drive, thus covering a larger
tract of land than the stations themselves. This approach exploits the fact that bike
share’s area of influence changed over the years at a seemingly random pace.

More specifically, recall that the units of analysis are 300 by 300-metre cells, for a
total of 9,760 cells across NYC. Each of these cells will be considered treated if it lies
on the route between two bike share stations that exchanged a bike during a given year.
In other terms, the treated cells are the cells through which ICE traffic is expected to
decrease, which, because cars tend to be constrained by the road network, includes many
cells where bike share stations are not accessible. This constitutes the first element that
introduces variation on the spatial scale that is unrelated to the placement of bike share
stations.

Furthermore, the expansion of the bike share network was carried out in a staggered
and irregular fashion. The history of NYC’s bike share deployment makes for a fitting
illustration. Bike share’s first deployment in NYC was originally scheduled for Summer
2012, but due to major software issues it was delayed first to Fall 2012 and then Spring
2013. At the same time, the spatial extent of the initial launch was significantly scaled
down as a result of extensive damages from Hurricane Sandy in October 2012.12 The first
expansion of the system was similarly pushed back by a year to 2015 because of remaining
software issues.13 Thus, while the order through which areas of the city received bike
share is arguably not random, the exact timing (i.e., the year it received bike share) and
the precise spatial extent of the extension (e.g., why stop at 59th street and not 79th
street?) are relatively random. Combined with the fact that the treatment definition used
in this study is a superset of the area where stations are deployed based on car itineraries,
the precise timing and extent of the treatment variable provides enough variation to act
as a valid treatment definition for a DD setting. In section 5.3, I perform several tests to

12Originally planned to extend up to 79th street, the launch finally covered areas south of 59th street
only.

13The considerable reworking of plans and schedule was reported at the time by the press (see for
example https://archive.ph/jZl4 and https://www.wnyc.org/story/284420-breaking-citibank-
is-sponsor-of-nyc-bike-share-citibike/), and confirmed during several private conversations I had
with people involved in the planning of NYC’s bike share program. Apart from major software issues
and Hurricane Sandy, they also noted that the initial lack of enthusiasm for the program on the part of
Bill De Blasio (NYC’s new mayor in 2014) decreased available resources for further expansions in the
short run.
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back up these claims.
In addition to a credible treatment, the empirical strategy relies on two main assump-

tions. First, control and treatment areas must follow parallel trends in terms of pollution
concentrations before the deployment of bike share. In other words, the difference in
concentrations between the treated and control group should be stable before treatment.
This central DD assumption is necessary in order to take the post-treatment trend of the
control group as a credible counterfactual for the post-treatment trend of the treatment
group had bike share not been implemented. I test for parallel trends in section 5.1.2
using a dynamic DD specification.

Second, staggered DD assumes that no other concomitant policy that could have
affected pollution concentrations was enacted at the same time and place as/where bike
share was rolled out. This assumption requires that there are no omitted and concurrent
policies that might explain the change in air quality. This means that treated areas
(the areas where bike share is expected to lower traffic emissions) should not have been
subjected to policies that could have reduced air pollution. While many policies and
programs are enacted every year in NYC, it appears unlikely that these policies would
have targeted the precise areas where bike share is expected to reduce pollution, and not
the others. For example, the city introduced a new type of taxi in 2013, the boro taxi.
Launched to increase transport options in neighbourhoods outside Manhattan, boro taxis
can only pick up passengers North of 100th street in Manhattan and everywhere else in
the other boroughs. While the launch date closely matches the opening of the bike share
program, the boro taxis program, if it affected traffic and pollution, affected it in areas
different from the ones I code as treated by bike share. It is therefore unlikely that a
policy followed the same spatial and temporal pattern as bike share’s extension.

One of the central requirements for this estimation strategy is the precise identification
of areas where pollution concentrations might have been affected by bike share. Using
the bike share trips dataset, I construct a new variable to capture the impact of bike
share on air pollution. As described in section 2, the impact of bike share on air quality
depends on the substitution away from ICE vehicles as a result of bike share. If there is
any substitution away from ICE vehicles, we would expect air pollution concentrations
to decrease in areas where fewer vehicles are driven because of bike share.

To identify those areas, I use the bike share trip data to first compute the unique
origin-destination pairs of stations (i.e., pairs of stations that exchanged at least one
bike during a given year). Using the r5r package in R, a routing algorithm able to take
into account the road network at different periods (Pereira et al., 2021), for each pair of
stations I compute the optimal car route that would have been driven if the bike trip
between these stations would have been made by car. For each year, there are on average
24K unique origin-destination pairs of bike share stations, totalling 500K computed car
routes.14

14The r5r routing algorithm is well-suited to this application for several reasons. First, contrary to the
Google Maps API, it takes into account the road network in place at a given time, letting me compute
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This exercise produces the optimal car routes between unique pairs of bike share
stations for each year. Next, I intersect these car routes (including a 150-meter buffer on
both sides) with the grid cells, identifying the cells crossed by a car route. Finally, I input
the number of bike share trips associated with each pair of stations to the car routes,
and sum the number of bike share trips for each cell that are crossed by car routes. I end
up with a dataset of cells that measure the total bike share traffic, but in areas where
cars would have been driven. In other words, I now have a yearly variable that captures
where (at the extensive margin) we would expect air pollution to reduce after bike share,
and, where we would expect it to reduce the most (at the intensive margin) as captured
by the number of bike share trips. The result is displayed as a map in Figure A.2.15

The econometric specification used to estimate the staggered DD is described by
equation 2. It is a standard two-way fixed effects (TWFE) model with multiple treatment
periods:

Yct = β · Treatct + ϕt + γc + Cct0 + εct (2)

Yct denotes the concentration of a given pollutant in cell c at time t; Treatct is a
binary variable indicating whether cell c is treated by bike share at time t; ϕt and γc are
year and cell fixed effects, respectively, which control for any invariant cell characteristics
and time trends; Cct0 is a vector of controls for cell c at period t0 right before treatment;
εct is the error term. Standard errors are clustered at the community district level,16 and
in a robustness check I follow Conley (1999) to compute standard error robust to spatial
dependence.

The coefficient of interest is β, which represents the average treatment effect on the
treated for the whole post-treatment period. In other words, it is the average change
in pollution concentration for a cell being crossed by a car route. If the treatment is
continuous (i.e., the number of bike share trips), β is interpreted as the effect of an
additional bike share trip on pollution concentration for an average treated cell.

The average treatment effect is a valuable metric, but one might, however, also be
interested in the dynamic effect of treatment with respect to time. The dynamic DD
specification, also known as an event study, plots the treatment effect for all periods.
The dynamic specification also allows us to test for differential pre-tends between groups:
by plotting the difference between treatment and control in the pre-treatment period, we

realistic routes across my sample period. Second, it is run on a local computer, which greatly reduces
computational time. Finally, it is free and open-source, which makes the algorithm and processing
transparent and reproducible.

15Alternatively, I define treatment for a given cell during a given year as (1) being within 300 metres
of a bike share station, or (2) being contained within the smallest convex polygon encompassing all
stations. The first alternative definition is based on the proximity to the bike share system, while the
second is also based on proximity but incorporates areas between treated areas as being treated, even
though they might be far from a station. Both, however, do not model the footprint of cars that might
be substituted as a consequence of bike share expansion.

16Community districts are local, within-borough neighbourhood advisory boards. There are 59 such
districts across NYC, plus 12 non-district areas (e.g., parks, beaches, airports), for a total of 71 clusters.
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will be able to evaluate the validity of the parallel trends assumption.
The specification for the dynamic DD is given in equation 3:

Yct =

−2∑
k=−9

βk · Treatck +
6∑

k=0

βk · Treatck + ϕt + γc + Cct0 + εct (3)

where k denotes the relative time to the first year of treatment, and the other terms are
the same as in the previous specification. The coefficients of interest are βk, which are
then plotted against relative time. In this setting, the reference period is relative time
k = −1, therefore the plotted βk denote the relative difference between treatment and
control groups compared to the period right before treatment.

A recent strand of the econometric literature has brought into question the TWFE
estimator with multiple treatment times. In particular, Goodman-Bacon (2021) shows
that TWFE reports biased average treatment effects, and those distortions are particularly
pronounced when (1) the size of the control group is small, and (2) the average treatment
effect varies over time. Several robust estimators have since been proposed in the
literature, with notable contributions including Borusyak et al. (2022), Callaway and
Sant’Anna (2021), de Chaisemartin and D’Haultfœuille (2020), and Sun and Abraham
(2021). While my setting does not suffer from a small control group, I cannot rule out
that the average treatment effect varies across cohorts. To confirm the results obtained
from the TWFE model, I use the estimator developed by Borusyak et al. (2022). This
estimator has several advantages compared to alternative robust estimators, the main
one being its high efficiency in computing standard errors.

4 Data

This section describes the data used to carry out the main analysis and the testing of
the substitution mechanism.

4.1 Air pollution

Spatial-temporal concentrations of air pollutants are the main outcome variables of the
analysis. The New York City Department of Health and Mental Hygiene (NYCDOH)
provides yearly, high-resolution air pollution data covering the city’s territory, divided
into 9,670 300-metre square cells since 2009. This subsection describes these data.

The project known as the New York City Community Air Survey (NYCCAS) has been
conducted by the NYCDOH and Queens College since December 2008. It aims to evaluate
air quality at the street level by measuring six major air pollutants: fine particulate
matter (particles smaller than 2.5 micrometres, i.e. PM 2.5), black (or elemental) carbon
(BC), nitric oxide (NO), nitrogen dioxide (NO2), ozone (O3) and sulfur dioxide (SO2).17

17O3 is measured during the Summer season only. SO2 was measured in Winter only until 2017, when
its measurement was discontinued due to concentrations below detection limits.
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Up to 150 monitors are distributed around the city every year, with 80% percent of sites
selected randomly, while the remainder are purposefully chosen near areas of interest and
to guarantee minimal coverage of neighbourhoods. The data collected from the monitors
is then processed and used to calibrate a land-use regression (LUR) model which in turn
produces the final raster grid dataset. Each of the 9,670 300-metre cells measures the
annual average concentration of a given pollutant in that cell. Details on air pollutant
measurements and the LUR model are presented in Clougherty et al. (2013) and Matte
et al. (2013).

Several features make the NYCCAS a relatively unique air quality dataset. First, it
offers measurement for a wide range of air pollutants. Second, pollution concentrations
are given at a high spatial resolution (300-metre cells, when satellite-based resolutions
range from 1 to 2 kilometres, see for example Gollin et al. (2021) or Gendron-Carrier et al.
(2022)), enabling much more detailed analysis within the city. Finally, the NYCCAS is
continuously available before and after the start of bike share, making pre and post-bike-
share comparisons possible.

I focus on a subset of pollutants measured by the NYCCAS. Two criteria were used
to select pollutants: (1) the pollutant should be associated with ICE vehicles, and (2) it
should be measured close to its emission source. Criterium (1) ensures that the pollutant
is relevant to the main mechanism (i.e., substitution), while (2) is necessary to narrow
down the potential area of influence of bike share. The selected pollutants are nitrous
oxides (NO and NO2), and particulate matter (PM 2.5 and BC). Nitrous oxides are gases
and common markers of ICE vehicle traffic, with 30% of concentrations attributed to
on-road vehicles. Nitrous oxides have a relatively steep concentration gradient, which
means that concentrations decrease faster the further away from the emission source.
PM 2.5 captures all the particles that are smaller than 2.5 micrometres (about 1/20th
the diameter of a human hair). Its health impacts have been extensively studied, which
makes it a popular pollutant to focus on. BC (also called soot or elemental carbon) is a
subset of PM associated with Diesel engine emissions.

4.2 Bike share

The bike share data is publicly available on the website of the service provider, Citi
Bike.18 The data consists of the universe of bike share trips made on the system since its
start in May 2013, as required by the service agreement with the city of New York. Each
trip is characterised by origin and destination station (unique ID, name and geographic
coordinates), departure and arrival timestamps, and an indicator variable for subscriber
riders. If the rider is a subscriber, year of birth and gender are reported. Several
cleaning operations are made on trip data to remove potentially problematic observations:
temporary and service stations are removed using identified keywords; round trips (i.e.,
identical origin and destination station) are removed; and trips under three minutes and

18https://ride.citibikenyc.com/system-data/, accessed 2022-10-20.
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over six hours are dropped. The final dataset contains about 100 million trips from May
2013 to December 2019.19 The gradual rollout of the bike share stations is mapped in
Figure A.1.

4.3 Spatial and time-varying variables

I collect several spatially distributed and time-varying control variables. The location and
type of cycling lanes are obtained from the New York City Department of Transportation
(NYCDOT). A large amount of data cleaning and manual processing was necessary in
order to correctly classify changes in cycling-lane types. Cycling lane lengths per type
were then computed for each 300-metre cell.

The American Community Survey (ACS) is used to gather socio-demographic variables.
I use the ACS 5-year, which collects data on a rolling 5-year basis and delivers estimates
at the census tract resolution. Census tract values are then imputed to the 300-metre cells
using the areal interpolation functions from the areal R package (Prener and Revord,
2019).20 Variables extracted from the ACS include population, median household income,
and level of tertiary education.

Zoning and building information are sourced from the New York City Department of
City Planning (NYCDCP) and its PLUTO dataset, which provides detailed land use and
geographic data at the tax lot level. These data are also aggregated at the 300-metre cell
level using areal interpolation.

Finally, I obtain the map of community districts from the NYC Open Data portal,
and assign each cell to one of the 59 community districts (and 12 remaining areas, usually
parks) its area covers the most.

4.4 Summary statistics

The variables used in the analysis are summarised in Table 1. The yearly counts of cells
crossed by a car route (main treatment variable) are displayed in Table 2.

5 Results

In this section, I report the average treatment effect of bike share on air pollution
concentrations obtained from the TWFE estimation. Event studies plotting the dynamic
impact of bike share on concentrations are presented, for both standard TWFE and the
Borusyak, Jaravel and Spiess (BJS) estimator. Tests on the validity of the empirical
setting are then presented.

19I described the building of the bike share treatment variable using these data in section 3.
20Each cell takes the weighted average of census tracts with weights given by the share of each tract’s

area covering the cell.
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Table 1: Summary statistics

Mean SD Min Max

Treatment group
Bike share trips 184,432.4 425,979.5 0 3393072
NO (parts per billion) 22.36 9.27 8.89 71.85
NO2 (parts per billion) 23.28 4.44 11.25 47.46
PM 2.5 (microgram per cubic metre) 9.45 1.61 5.99 17.63
BC (absorption) 1.11 0.3 0.47 2.61
College graduates (count) 592.12 679.39 0 4,815.52
Population 1,589.34 1,161.32 0 7,311.22
Population over 25 1,149.99 880.62 0 5,832.03
Median household income (2019 $) 69,168.22 44,223.59 0 272,587.4
Protected cycle lane (ft) 318.34 579.58 0 3,522.82
Painted cycle lane (ft) 425.09 710.55 0 4,540.39
Cycle route (ft) 156.77 384.82 0 2,946.44
At-least-painted cycle lane (ft) 743.43 887.22 0 5,729.1
Built surface (sq ft) 1,451,731 1,744,487 0 22,156,429
Office area (sq ft) 296,846.4 1,079,304 0 13,503,541
Residential area (sq ft) 784,423.6 821,027.6 0 5,625,712
Commercial area (sq ft) 641,170.4 1,386,116 0 19,326,407
Retail area (sq ft) 78,493.02 169,277.3 0 3,790,754
Other floor area (sq ft) 2.79 16.26 0 1,047.57

Control group
Bike share trips 0 0 0 0
NO (parts per billion) 14.86 5.22 5 80.52
NO2 (parts per billion) 16.62 4.15 5.38 32.27
PM 2.5 (microgram per cubic metre) 7.94 1.3 5.36 13.2
BC (absorption) 0.78 0.24 0.17 3.23
College graduates (count) 132.32 158.72 0 1,910.09
Population 734.29 837.89 0 7,394.62
Population over 25 492.46 551.1 0 4,916.74
Median household income (2019 $) 63,418.2 37,975.29 0 293,774.6
Protected cycle lane (ft) 101.97 373.93 0 6,913.87
Painted cycle lane (ft) 105.04 368.01 0 3,974.35
Cycle route (ft) 53.82 233.34 0 3,086.08
At-least-painted cycle lane (ft) 207.01 525.26 0 7,911.46
Built surface (sq ft) 382,765.3 516,905.7 0 49,915,505
Office area (sq ft) 16,346.77 52,503.43 0 1,046,949
Residential area (sq ft) 284,622.9 338,853.6 0 2,919,417
Commercial area (sq ft) 93,149.03 250,471.1 0 10,218,426
Retail area (sq ft) 17,338.82 46,285 0 1,103,965
Other floor area (sq ft) 0.75 6.83 0 992.49
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Table 2: Treatment yearly summary

Year Cell on car route Count Percent

0 8510 92.792013 1 661 7.21

0 8512 92.812014 1 659 7.19

0 8165 89.032015 1 1006 10.97

0 7903 86.172016 1 1268 13.83

0 7599 82.862017 1 1572 17.14

0 7547 82.292018 1 1624 17.71

0 7442 81.152019 1 1729 18.85

5.1 TWFE results

5.1.1 TWFE Average treatment effects

The results are presented for each selected pollutant in turn in Tables 3 to 6. Standard
errors are clustered at the community-district level.21 My preferred specification includes
cell and year fixed-effects with baseline controls (Column 2).

Table 3 shows the impact on NO concentrations for a cell being on a car route between
bike share stations. In my preferred specification with baseline controls (Column 2),
concentrations of NO decrease on average by 2.7 parts per billion for cells on a car route.
This coefficient represents a 13.4% decrease with respect to mean concentrations for the
whole sample before 2013. Table 4 reports the average treatment effect of bike share
on NO2 concentrations. Bike share significantly reduces NO2 concentrations in areas
where fewer cars are likely to be driven. The decrease in NO2 represents about 6.2% of
pre-treatment concentrations. The impact on BC is reported in Table 5. For BC also,
concentrations reduce in areas where fewer cars are expected to be driven due to bike
share. The coefficient represents a 2.8% decrease compared to BC concentrations before
the first implementation of bike share in 2013. Finally, the effect on PM 2.5 is shown in
Table 6. The effect of bike share on PM 2.5 concentrations is indistinguishable from zero,
but has the expected negative sign. From these results, it appears that bike share has
reduced the concentration of NO, NO2 and BC by 2.8 to 13.4%, but had no effect on
PM 2.5 concentrations.

Tables 3 to 6 investigate the extensive margin of the impact of bike share, with the
treatment being an indicator variable taking the value of 1 if the cell is crossed by a car

21Conley (1999) standard errors robust to spatial dependence are reported in Appendix B.
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Table 3: Effect of bike share on NO concentrations

NO
(1) (2)

On-car-route -2.5360∗∗∗ -2.7281∗∗∗

(0.8595) (0.8543)

Baseline controls ✓

Cell FE ✓ ✓
Year FE ✓ ✓

Mean concentration pre-treat. 20.322 20.353
% mean concentration pre-treat. -12.479 -13.404
Observations 91,710 90,898
R2 0.906 0.908
Within R2 0.049 0.066
Clustered (Community district) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 4: Effect of bike share on NO2 concentrations

NO2
(1) (2)

On-car-route -1.1489∗∗∗ -1.2554∗∗∗

(0.2771) (0.2759)

Baseline controls ✓

Cell FE ✓ ✓
Year FE ✓ ✓

Mean concentration pre-treat. 19.950 20.007
% mean concentration pre-treat. -5.759 -6.275
Observations 91,710 90,898
R2 0.978 0.979
Within R2 0.081 0.123
Clustered (Community district) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 5: Effect of bike share on BC concentrations

BC
(1) (2)

On-car-route -0.0253∗ -0.0280∗∗

(0.0128) (0.0129)

Baseline controls ✓

Cell FE ✓ ✓
Year FE ✓ ✓

Mean concentration pre-treat. 1.015 1.017
% mean concentration pre-treat. -2.494 -2.757
Observations 91,710 90,898
R2 0.956 0.956
Within R2 0.006 0.011
Clustered (Community district) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 6: Effect of bike share on PM concentrations

PM
(1) (2)

On-car-route -0.0097 -0.0320
(0.0686) (0.0688)

Baseline controls ✓

Cell FE ✓ ✓
Year FE ✓ ✓

Mean concentration pre-treat. 9.433 9.441
% mean concentration pre-treat. -0.103 -0.339
Observations 91,710 90,898
R2 0.978 0.979
Within R2 0.000 0.018
Clustered (Community district) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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route, and zero otherwise. These results do not take into account the intensity of bike
share activity and produce an average treatment effect on the treated, irrespective of
the level of treatment. Next, I investigate the impact of treatment intensity on pollution
concentrations. Recall from section 3, I compute, for each car route between pairs of bike
share stations, the number of bike share trips for that pair. I then aggregate the number
of bike share trips for each cell. In Tables 7 to 10, I report the effect of the number of
bike share trips in cells crossed by car routes. I present the results for both the number
of bike share trips measured in 10,000 and the inverse hyperbolic sine transformation of
the number of bike share trips.22

Table 7: Effect of bike share on NO concentrations

NO
(1) (2) (3) (4)

Trips (10K) -0.0839∗∗∗ -0.0860∗∗∗

(0.0115) (0.0114)
Trips (IHS) -0.2758∗∗∗ -0.2947∗∗∗

(0.0850) (0.0845)

Baseline controls ✓ ✓

Cell FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

Mean concentration pre-treat. 20.322 20.322 20.353 20.353
% mean concentration pre-treat. -0.413 -1.357 -0.423 -1.448
Observations 91,710 91,710 90,898 90,898
R2 0.927 0.909 0.929 0.911
Within R2 0.257 0.077 0.279 0.097
Clustered (Community district) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

For NO (Table 7), 10,000 additional bike share trips through a cell crossed by a car
route reduce concentrations by 0.086 parts per billion, or 0.4% of the pre-2013 mean NO
concentration. For a 1% increase in bike share trips, NO concentration would decrease
by 0.003 parts per billion, or 0.015% of pre-2013 mean concentrations. The impact of
an additional 10,000 bike share trips is smaller for NO2 but still statistically significant
(Table 8): concentrations would reduce by 0.13% with respect to the pre-2013 mean.
The impact of a 1% increase in bike share trips would result in a 0.006% decrease from
the pre-treatment mean. BC concentrations would reduce by 0.1% for ten thousand
additional bike share trips, and 0.003% for a 1% increase. Finally, PM concentrations

22The inverse hyperbolic sine (IHS) is a type of log transformation, particularly suited for variables
with a large share of zeros (Bellemare et al., 2013; MacKinnon and Magee, 1990). The IHS value is
given by IHS(x) = ln

(
x+

√
x2 + 1

)
. Its interpretation is the same as a typical log transformation: the

coefficient divided by 100 represents the change in the outcome variable when the independent variable
increases by 1%.
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Table 8: Effect of bike share on NO2 concentrations

NO2
(1) (2) (3) (4)

Trips (10K) -0.0253∗∗∗ -0.0263∗∗∗

(0.0034) (0.0033)
Trips (IHS) -0.1119∗∗∗ -0.1218∗∗∗

(0.0256) (0.0254)

Baseline controls ✓ ✓

Cell FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

Mean concentration pre-treat. 19.950 19.950 20.007 20.007
% mean concentration pre-treat. -0.127 -0.561 -0.131 -0.609
Observations 91,710 91,710 90,898 90,898
R2 0.981 0.979 0.982 0.980
Within R2 0.188 0.103 0.231 0.147
Clustered (Community district) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

decrease by 0.035% for 10,000 additional bike share trips (statistically significant), but a
1% increase in bike share trips does not significantly reduce concentrations.

5.1.2 TWFE Dynamic effects

I now report the estimates for the dynamic TWFE specification. In this specification, I
estimate the impact of bike share on pollution concentrations for every period relative to
treatment. Plotting the results yields an event study, which lets us evaluate the parallel
trends before treatment assumption (i.e., no statistically significant differences in the
trends of pollution concentrations between the control and treatment group before the
treatment), and observe the dynamics of the effect over time. The estimates plotted
control for baseline covariates, with standard errors clustered at the community district
level.

Figure 1 plots the dynamic effect of being crossed by a car route between two bike share
stations on the concentration of NO. In the period leading up to treatment (the left half
of the plot), we notice no statistically significant differences in pollution concentrations
between the treated and control group, providing good support for the parallel trends
assumption. A decreasing trend after treatment indicates that treated cells see their NO
concentrations drop after bike share is implemented and are crossed by car routes. The
effect gets larger and is persistent over time. Turning to NO2 in Figure 2, we also notice
and significant decrease post-bike-share introduction. In the period leading to treatment,
however, treated cells displayed a statistically significant difference in NO2 concentration
with control cells, which does not support the parallel trends assumption. Dynamic
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Table 9: Effect of bike share on BC concentrations

BC
(1) (2) (3) (4)

Trips (10K) -0.0010∗∗∗ -0.0010∗∗∗

(0.0002) (0.0002)
Trips (IHS) -0.0032∗∗∗ -0.0035∗∗∗

(0.0012) (0.0012)

Baseline controls ✓ ✓

Cell FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

Mean concentration pre-treat. 1.015 1.015 1.017 1.017
% mean concentration pre-treat. -0.097 -0.316 -0.100 -0.342
Observations 91,710 91,710 90,898 90,898
R2 0.958 0.957 0.958 0.957
Within R2 0.046 0.014 0.052 0.019
Clustered (Community district) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 10: Effect of bike share on PM concentrations

PM
(1) (2) (3) (4)

Trips (10K) -0.0031∗∗∗ -0.0033∗∗∗

(0.0011) (0.0011)
Trips (IHS) -0.0036 -0.0057

(0.0067) (0.0067)

Baseline controls ✓ ✓

Cell FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓

Mean concentration pre-treat. 9.433 9.433 9.441 9.441
% mean concentration pre-treat. -0.033 -0.038 -0.035 -0.060
Observations 91,710 91,710 90,898 90,898
R2 0.979 0.978 0.979 0.979
Within R2 0.033 0.001 0.055 0.020
Clustered (Community district) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Figure 1: Dynamic effect of bike share on NO concentrations

Figure 2: Dynamic effect of bike share on NO2 concentrations
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Figure 3: Dynamic effect of bike share on BC concentrations

Figure 4: Dynamic effect of bike share on PM 2.5 concentrations
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Figure 5: Dynamic effect of bike share on NO concentrations, BSJ estimator

effects of bike share on BC are displayed in Figure 3. The parallel trends assumption
seems reasonably supported by the data, and there is a statistically significant and
persistent decrease in BC concentrations after bike share introduction. Finally, there are
no discernible patterns of the impact of bike share on PM 2.5 concentrations (Figure 4).

5.2 Borusyak, Jaravel and Spiess (2022) Dynamic effects

Under some conditions, TWFE estimates have been shown to be biased for settings with
multiple treatment periods. While the present setting does not suffer from the worst
pitfalls of TWFE (e.g., small or non-existent never treated), TWFE is still subject to
potential bias if the ATT varies over time. To mitigate these concerns, I report the
dynamic effects of bike share on pollution concentrations using the Borusyak et al. (2022)
(BJS) estimator.

Figure 5 shows the dynamic effect of being crossed by a car route for cells at each
period relative to treatment on the concentration of NO. In the pre-treatment period,
we notice a slight negative pre-trend for the treated group, which may indicate that
treated cells were not following a parallel trend in NO concentration before treatment.
In the post-period, we see a decrease, persistent in time, for the treated group. NO2

(Figure 6) now displays reasonable parallel trends between groups prior to treatment,
and a significant and persistent decrease in NO2 concentration for the treated group
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Figure 6: Dynamic effect of bike share on NO2 concentrations, BSJ estimator

Figure 7: Dynamic effect of bike share on BC concentrations, BSJ estimator
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Figure 8: Dynamic effect of bike share on PM 2.5 concentrations, BSJ estimator

after treatment. BJS dynamic effects (Figure 7) confirm TWFE results for BC, with
pre-trends consistent with the parallel trend assumption and a negative and persistent
effect of bike share on BC concentrations. Finally, the effects of bike share on PM 2.4
(Figure 8) remain indistinguinshable from zero.

5.3 Testing treatment exogeneity

DD estimations rely on the assumption that treatment status and timing are orthogonal
to covariates. I now turn to the testing of the exogeneity assumption, both on the
cross-sectional level and the temporal level. To check for the cross-sectional exogeneity
of treatment, I run a linear probability model on the treatment status, using a battery of
covariates averaged for years before 2013. The estimating equation takes the form of

Yi = β0 + βXit̄ + γb + εi (4)

where Yi is the binary treatment status (0 if never treated, 1 if eventually treated) of
cell i, Xit̄ the vector of covariates average over the pre-treatment period t̄ (i.e., before
2013), β the vector of coefficients associated with the covariates, and γb are borough
fixed effects.

Results of the linear probability model are reported in Table 11. Magnitudes are
in general fairly small, but a handful of covariates are systematically associated with a
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Table 11: Effects of baseline covariates on probability of treatment

Probability of being treated
(1) (2) (3) (4)

Constant 0.1003∗∗∗ 0.1003∗∗

(0.0092) (0.0475)
Other floor area (sq ft) 0.0007 0.0007 0.0017 0.0017

(0.0015) (0.0029) (0.0020) (0.0018)
Retail area (sq ft) 0.0000 0.0000 0.0000 0.0000

(0.0000) (0.0000) (0.0000) (0.0000)
Residential area (sq ft) 0.0000 0.0000 0.0000∗ 0.0000∗∗

(0.0000) (0.0000) (0.0000) (0.0000)
Office area (sq ft) 0.0000∗∗∗ 0.0000∗ 0.0000∗ 0.0000∗∗

(0.0000) (0.0000) (0.0000) (0.0000)
Commercial area (sq ft) 0.0000 0.0000 0.0000 0.0000

(0.0000) (0.0000) (0.0000) (0.0000)
Built area (sq ft) 0.0000 0.0000 0.0000∗ 0.0000∗∗

(0.0000) (0.0000) (0.0000) (0.0000)
At-least-painted cycle lanes (ft) -0.0012 -0.0012 0.0000∗∗∗ 0.0000

(0.0010) (0.0009) (0.0000) (2.8020)
Cycle route (ft) 0.0001∗∗∗ 0.0001∗ 0.0001 0.0001∗∗

(0.0000) (0.0000) (0.0000) (0.0000)
Painted cycle lanes (ft) 0.0014 0.0014 0.0001∗∗∗ 0.0001

(0.0010) (0.0009) (0.0000) (2.6784)
Protected cycle lanes (ft) 0.0015 0.0015∗ 0.0000 0.0000

(0.0010) (0.0009) (0.0000) (2.8896)
Population over 25 -0.0002∗∗∗ -0.0002 -0.0002 -0.0002

(0.0001) (0.0002) (0.0002) (0.0001)
Population 0.0001∗∗∗ 0.0001 0.0001 0.0001

(0.0000) (0.0001) (0.0001) (0.0001)
Median household income 0.0000∗∗∗ 0.0000∗∗ 0.0000 0.0000

(0.0000) (0.0000) (0.0000) (0.0000)
College graduates 0.0005∗∗∗ 0.0005∗∗∗ 0.0003∗∗ 0.0003∗∗∗

(0.0000) (0.0001) (0.0001) (0.0001)

Borough FE ✓ ✓

Standard-errors Robust Cluster CD Cluster CD Conley (0.59km)
Observations 9,089 9,089 9,089 9,089
Squared Correlation 0.277 0.277 0.391 0.391
Pseudo R2 0.288 0.288 0.506 0.506
BIC 6,473.067 6,473.067 4,568.309 4,568.309
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Robust indicate heteroskedasticity-consistent standard errors, Cluster CD denote standard
errors clustered at the community district, and Conley are standard errors robust to spatial
dependence computed following Conley (1999).
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Table 12: Effects of baseline covariates on timing of treatment

Year of treatment
(1) (2) (3) (4)

Constant 9,199.0699∗∗∗ 9,199.0699∗∗∗

(82.7379) (380.8176)
Other floor area (sq ft) -5.8446 -5.8446 -13.6360 -13.6360

(14.7006) (26.0137) (15.8736) (14.1585)
Retail area (sq ft) 0.0003 0.0003 0.0003 0.0003

(0.0007) (0.0011) (0.0008) (0.0007)
Residential area (sq ft) 0.0026 0.0026 0.0043∗ 0.0043∗∗

(0.0064) (0.0052) (0.0025) (0.0021)
Office area (sq ft) 0.0011∗∗∗ 0.0011 0.0009∗ 0.0009∗∗

(0.0004) (0.0007) (0.0005) (0.0005)
Commercial area (sq ft) 0.0012 0.0012 0.0032 0.0032

(0.0064) (0.0052) (0.0025) (0.0022)
Built area (sq ft) -0.0027 -0.0027 -0.0043∗ -0.0043∗∗

(0.0064) (0.0052) (0.0025) (0.0021)
At-least-painted cycle lanes (ft) 15.9987 15.9987 -0.6707∗∗∗ -0.6707

(33.4240) (28.2850) (0.1279) (29,801.1007)
Cycle route (ft) -0.5449∗∗∗ -0.5449 -0.4542 -0.4542∗∗

(0.1906) (0.4194) (0.3013) (0.2287)
Painted cycle lanes (ft) -15.3254 -15.3254 -0.3133∗ -0.3133

(33.4210) (28.4746) (0.1598) (30,109.0169)
Protected cycle lanes (ft) -13.5124 -13.5124 0.1876 0.1876

(33.4204) (28.3052) (0.1434) (29,933.4526)
Population over 25 1.6746∗∗∗ 1.6746 1.6433 1.6433

(0.6230) (2.3883) (1.7218) (1.1214)
Population -0.9936∗∗∗ -0.9936 -0.9489 -0.9489

(0.3711) (1.3676) (0.9755) (0.6694)
Median household income 0.0065∗∗∗ 0.0065∗ 0.0017 0.0017

(0.0008) (0.0034) (0.0031) (0.0014)
College graduates -3.6981∗∗∗ -3.6981∗∗∗ -2.3044∗∗ -2.3044∗∗∗

(0.3124) (1.0816) (0.9850) (0.5169)

Borough FE ✓ ✓

Standard-errors Robust Cluster CD Cluster CD Conley (0.59km)
Observations 9,089 9,089 9,089 9,089
R2 0.013 0.013 0.391 0.391
Within R2 0.112 0.112
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Robust indicate heteroskedasticity-consistent standard errors, Cluster CD denote standard errors
clustered at the community district, and Conley are standard errors robust to spatial dependence
computed following Conley (1999).
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higher probability of a cell having a car route crossing it. In preferred specifications with
borough fixed effects (columns 3 and 4), higher levels of residential built area, office area
and general built area are associated with a higher probability of treatment. Bike lane
length seems to be associated with a higher probability of treatment, but the different
types take varying statistical significance depending on the specification.23 Population
and median income are predictors of treatment in specifications without borough fixed
effects, but their predictive power vanishes when adding them. Finally, higher counts of
college graduates per cell are associated with a higher probability of treatment.

Table 12 estimates the same model as in 4, with the year of treatment now taking
the role of the dependent variable. The goal of this estimation is to check whether
covariates are good predictors for the timing of treatment. Negative coefficients are
interpreted as covariates that make treatment occur earlier. The extent of residential
area is thus associated with slightly later treatment, while total built area is a predictor
of earlier treatment. Cycle routes and painted cycle lanes are also associated with
earlier treatment, while protected lanes do not appear to be a predictor of treatment. In
preferred specifications with borough fixed effects, population and median income are
not statistically significant predictors of treatment timing. Finally, college graduates are
associated with earlier treatment.

Given their statistical significance in predicting both treatment status and the timing
of treatment, I control for residential area, office area, total built area, at-least-painted
cycle lanes, median household income and count of college graduates in my specifications.

5.4 Robustness checks

I perform the same analysis with two alternative treatment definitions: (1) the cell is
within 300 metres of a bike share station, (2) the cell is within the smallest convex
polygon that includes all bike share stations. These treatment definitions are less well
suited to capturing the areas where fewer cars might have been driven due to bike share,
and are more closely associated with the areas of bike share implementation, which might
make treatment less exogenous to other factors. Conditional on these limitations, I find
comparable results using the alternative treatment definitions (see Appendix C).

Finally, I compute standard errors robust to spatial dependence following Conley
(1999) (Appendix B). For most specifications, this improves statistical significance.

5.5 Discussion

Results presented in this section indicate that bike share has reduced the concentration of
NO by up to 13.4% and BC by up to 2.7% with respect to pre-2013 mean concentrations
in NYC. The dynamic estimates shown in the event study plots provide support for
the parallel trends assumption for both pollutants, and lead me to conclude that the

23These measures of bike lanes are highly correlated to each other, and might be relatively collinear.
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decreasing effect of bike share on NO and BC is likely causal. The pre-treatment trends
displayed by NO2 in its event study plot call for caution when interpreting the statistically
significant negative coefficients as causal. When analysing NO2 with the BJS estimator,
however, the parallel trends assumption seems better supported by the graphical evidence.
The impact of bike share on NO2 is thus uncertain, although it is important to note that
NO and NO2 are often highly correlated and have similar emission sources. As we have
seen, the impact on PM 2.5 of bike share is relatively noisy, and we cannot conclude that
bike share had a significant impact on PM 2.5 concentrations in NYC.

Comparing these results with related literature is challenging, as most studies focus on
other pollutants such as PM 2.5, PM 10 and carbon monoxide (CO). Low-emission-zones
studies have found that PM 10 decreases by 5.5 to 9% (Wolff, 2014; Zhai and Wolff,
2021), while Jiang et al. (2017) finds very limited impacts on nitrogen oxides. Some of the
literature on congestion charge has found significant decreases in NO2 and PM 10 (Tonne
et al., 2008), while others registered an increase in NO2 but a decrease in NO (Green
et al., 2020). Finally, subway and urban railway expansions have been associated with a
reduction of aerosol particulates (similar to PM) of 4% (Gendron-Carrier et al., 2022)
and CO by 5 to 15 percent (Chen and Whalley, 2012). The results I obtain, although for
different pollutants, are of similar magnitude.

Shr et al. (2022) is the only other study examining the impact of bike share on air
pollution using causal inference. Their setting is a two-period DD in Taiwan’s second-
biggest city. They find moderate decreases in CO of around 2.0%, but no statistically
significant decrease in NO or NO2. They note that CO is the only pollutant they observe
of which a significant share may be attributed to two-wheeled ICE vehicles. This suggests
that some substitution might have occurred for this class of vehicles, and highlights that
the impact of bike share on air quality is highly dependent on the transport modes it
substitutes. As we will see in the next section, I argue that taxis play an important role
in NYC’s transport environment, and find suggestive evidence that bike share substitutes
taxi service.

Using concentration-response values of NO on health outcomes (mortality, emergency
department visits and hospitalisations) and monetary values associated with those
outcomes, I perform back-of-the-envelope calculations to estimate the health and mortality
costs saved by the deployment of bike share. I find that bike share reduced costs by $327
million, and that an average bike share trip is associated with a $3.31 decrease in health
costs, while end-users pay $1.81 per trip on average. If costs and benefits where perfectly
internalised and no other costs existed, bike share riders should receive $1.50 per ride for
the net social benefit they create. I detail the monetary valuation of the health benefits
associated with the reduction in NO due to bike share in Appendix D.
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6 Mechanism

In section 2, I discussed the main mechanism through which bike share might have
impacted air pollution concentrations, which is the substitution away from internal-
combustion-engine (ICE) vehicles in favour of cycling. In this section, I explore the
available evidence to support this mechanism. I start by reviewing the literature and
policy reports before turning to the data and analysing the evolution of taxi trips in
areas served by bike share.

6.1 Introduction

The main hypothesis for bike share to reduce pollution is that the introduction of bike
share reduces the relative price of (and increases the accessibility to) cycling. This change
in the relative attractiveness of the cycling transport option will induce some trips to be
substituted away from other transport modes. If these previous transport modes were
ICE vehicles, then bike share will have reduced emissions associated with these vehicles.
In the previous section, we saw that the concentrations of key pollutants generated by
ICE decreased in areas where fewer vehicles are likely to have been driven due to bike
share. Importantly, the previous section has shown a decrease in a harmful by-product of
traffic, air pollution. Here, I examine there is direct evidence that traffic itself decreased.

To tackle this question, I turn to taxis. Taxis are a useful measure of traffic and ICE
vehicles for several reasons. First, taxi trips have been identified by previous research
to be good proxies for overall road traffic (Castro et al., 2012; Kan et al., 2019; Kong
et al., 2016). Second, taxi riding is a popular mode of transport in NYC. In 2014, taxis
made on average 485 thousand trips per day, transporting 236 million passengers per
year (New York City Taxi and Limousine Commission, 2014).

Taxi rides in NYC also exhibit many characteristics that make them good substitution
candidates for bike share. First, an average taxi ride is similar to an average bike share
ride: 55% of taxi trips are less than 3 kilometres long, while around 80% of bike share
trips are less than 3 kilometres. Rider demographics are also reasonably comparable, with
70% of taxi riders below 35 years old, while the median age of a bike share subscriber
is 33. In addition, bike share was implemented in areas with heavy taxi use: 95% of
traditional “yellow” taxi pick-ups occurred in Manhattan below 96th street, an area that
bike share served by 2016. Finally, the 2019 NYC Mobility Report presents a compelling
case study, comparing taxi service and bike share in Midtown (see Figure 9). In Midtown,
where close to 50% of all counted vehicles were taxis or ride-hailing cars, a bike share ride
was consistently faster than a taxi ride for trips ranging from 0.5 to 2 miles, and came
at a fraction of the taxi fare (see Figure 9b), further hinting towards the substitution
potential of bike share for taxi service.

Beyond similar characteristics and substitution potential, previous research has
revealed a direct substitution relationship between bike share and taxi rides. Molnar and
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(a) Location of Midtown (b) Fares and travel time camparison

Figure 9: Bike share vs Taxi service in Midtown, 2019 NYC Mobility Report

Ratsimbazafy (2017) show that, following the outage of a bike share station, taxi pickups
increase in its vicinity. Moreover, they estimate the long-run substitution of taxis due to
bike share of 3 to 4%, with taxi drivers operating in the bike share area seeing a relative
decline in revenue.

6.2 Testing the substitution mechanism

Based on the anecdotal and empirical evidence presented above, I further investigate the
relationship between bike share and taxi service using the universe of taxi trips from
2009 to 2019 provided by the NYC Taxi & Limousine Commission (NYC T&LC). There
are on average 170 million taxi trips per year, for a total of about 1.1 billion trips during
my study period. Each trip is characterised by origin and destination locations, start
and end time and date, distance driven, fares, and other variables. Using these data,
I identify taxi trips most likely to be substitutable by bike share. I use the taxi trip’s
travel distance, and define substitutable trips as those which are five kilometres or less,
based on the fact that 85% of bike share trips are less than five kilometres. I aggregate
short (i.e., less than five kilometres) and long taxi trips at the taxi zone of pickup.24 I
then specify a dynamic staggered DD estimation that captures the effect of bike share
deployment on the level of short and long taxi trips. The estimating equation is given by:

24There are 263 taxi zones defined by the T&LC, see Figure A.3. Their size varies, with smaller zones
in southern Manhattan and larger ones in Staten Island, likely related to the level of taxi traffic in each
zone.
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Figure 10: Dynamic effect of bike share on yellow taxi pickups

Yitd =
−2∑

k=−9

βk · Treatik +
6∑

k=0

βk · Treatik + ϕt + γi + ηit + εit (5)

where Yitd is the number of taxi trips of length d (i.e., short or long) in taxi zone i in
month t. Unlike the main analysis, the treatment variable Treati is defined, for each
taxi zone, as being within 300 metres of a bike share station. In the present context, it is
most likely that the impact of bike share on taxi pickups will be most prominent close
to bike share stations. Finally, ϕt, γi and ηit denote time, taxi-zone, and borough-time
fixed effects, respectively, while εit serves as the error term.

The βk coefficients are plotted in Figure 10, separately for short trips (green, circles)
and long trips (orange, triangles). In the periods leading to treatment, there are no
significant differences in taxi pickups for both short and long taxi trips between taxi
zones close to bike share stations and the others. Following treatment, areas served by
bike share see a decrease in the number of pickups. Notably, the decrease is larger for
short trips compared to long trips. I interpret this as suggestive evidence that bike share
reduces taxi trips taken, and more so for taxi trips that are most similar to bike share
trips.
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6.3 Other mechanisms

While I expect substitution to be the main channel through which bike share impacts
pollution, other channels may come into play. I identify three additional channels through
which bike share may affect air pollution: the crowding effect, the efficiency externality
and the strength-in-numbers virtuous cycle.

The crowding effect describes the effect of increasing the number of bikes on the
streets. Although they take much less space per traveler, bikes may still create congestion
on streets, especially due to lower travel speeds which may force other vehicles to slow
down, creating congestion and increasing pollution emissions. Bike lanes, by removing
lanes for other road vehicles, may have a similar effect. On the other hand, the crowding
effect may lead ICE vehicles to drive alternative routes to avoid newly congested areas,
displacing air pollution rather than reducing it. Evidence from Hamilton and Wichman
(2018), however, indicates that congestion tends to decrease in areas served by bike
share, and suggests limited road traffic displacement to adjacent areas. Importantly, the
crowding out effect would go against me finding an impact of bike share on air pollution.

Usage of bike share varies across time and space. Popular origin stations experience
a high demand for bikes, while docks at popular destination stations are sometimes
full. To ensure a sufficient level of service, bikes need to be rebalanced between stations.
This need for efficiency, however, may create externalities. Rebalancing in NYC is done
with “bike trains” (an e-bike that can carry 12 to 16 bikes) and ICE vehicles. The trips
made by the latter, especially during highly congested periods, increase emissions and
congestion, creating an efficiency externality. While little data is available on the scope
and frequency of rebalancing, I expect the induced increase in driving and congestion
to have a relatively small effect on air pollution due to its relatively small footprint
compared to total traffic. Increased air pollution due to station rebalancing would bias
the estimates of bike share downwards.

Finally, increasing the number of bike trips made in the city through bike share may
create a virtuous cycle: by making bikes more ubiquitous and accessible, the attitude of
ICE vehicles towards bikes may change over time. More cyclists on the streets create a
“safety-in-numbers” effect and lessen the perceived danger of cycling for potential cyclists,
a crucial factor for cycling take-up identified by the literature (Pucher and Buehler, 2012).
More bike trips also mean a shift in the perception of cycling, contributing to making
cycling a more acceptable transport option. This all leads, at the margin, to more people
switching to cycling, further decreasing air pollution if their previous modes of transport
were ICE vehicles. The virtuous cycle initiated by bike share would overestimate the
effect of bike share if the increase in non–bike-share cycling was spatially correlated with
the bike share area.
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7 Conclusion

In this paper, I investigate the effect of the implementation and gradual rollout of
the NYC bike share program on air pollution concentrations. Leveraging the gradual
expansion of the system and a treatment variable capturing areas most likely to be
affected by bike share, I find that bike share reduced concentrations of NO2 by up to
13.4% and BC by up to 2.7% compared to pre-implementation mean concentrations. The
decrease in NO concentrations is associated with up to $327 million reductions in health
and mortality costs, and make riding a bike share a net social benefit.

These effects differ from estimates made in the previous literature. In particular, Shr
et al. (2022) find no impact of bike share on nitrogen oxides and only limited decrease in
carbon monoxide in Taipei’s second-largest city. The disparity between the two results
might stem from different likely sources of substitution. In NYC, the analysis of taxi
trips suggests that the substitution away from taxi service might explain the decrease
in pollution levels. In Taipei, as Shr et al. (2022) have noted, most of the substitution
may come from public transport riders, pedestrians and some two-wheeled-vehicle riders
(hence the decrease in carbon monoxide). This highlights the importance of identifying
the source of substitution, as it will determine the environmental impact of sustainable
transport policies and micromobility services.
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A Additional maps

Figure A.1: Gradual rollout of bike share stations in NYC
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Figure A.2: Spatial extent of treatment and imputed trips per cell at bike share imple-
mentation and last study period
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Figure A.3: Map of taxi zones in proximity of bike share stations
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B Conley standard errors

I compute standard errors robust to spatial dependence following Conley (1999) for all
specifications.

B.1 TWFE Average treatment effects

Table B.1: Effect of bike share on NO concentrations

NO
(1) (2) (3) (4)

On-car-route -2.5360∗∗∗ -2.7281∗∗∗ -1.0262∗∗∗ -0.6398∗∗∗

(0.3540) (0.3507) (0.1957) (0.1996)

Baseline controls ✓ ✓ ✓

Cell FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Year-Community district FE ✓
Year-Borough FE ✓

Mean concentration pre-treat. 20.322 20.353 20.353 20.353
% mean concentration pre-treat. -12.479 -13.404 -5.042 -3.144
Observations 91,710 90,898 90,898 90,898
R2 0.906 0.908 0.960 0.937
Within R2 0.049 0.066 0.013 0.010
Conley (0.59km) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table B.2: Effect of bike share on NO2 concentrations

NO2
(1) (2) (3) (4)

On-car-route -1.1489∗∗∗ -1.2554∗∗∗ -0.2010∗∗∗ -0.4141∗∗∗

(0.0967) (0.0955) (0.0647) (0.0629)

Baseline controls ✓ ✓ ✓

Cell FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Year-Community district FE ✓
Year-Borough FE ✓

Mean concentration pre-treat. 19.950 20.007 20.007 20.007
% mean concentration pre-treat. -5.759 -6.275 -1.005 -2.070
Observations 91,710 90,898 90,898 90,898
R2 0.978 0.979 0.994 0.985
Within R2 0.081 0.123 0.012 0.026
Conley (0.59km) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table B.3: Effect of bike share on BC concentrations

BC
(1) (2) (3) (4)

On-car-route -0.0253∗∗∗ -0.0280∗∗∗ -0.0078 -0.0097∗∗

(0.0057) (0.0057) (0.0052) (0.0047)

Baseline controls ✓ ✓ ✓

Cell FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Year-Community district FE ✓
Year-Borough FE ✓

Mean concentration pre-treat. 1.015 1.017 1.017 1.017
% mean concentration pre-treat. -2.494 -2.757 -0.771 -0.952
Observations 91,710 90,898 90,898 90,898
R2 0.956 0.956 0.979 0.970
Within R2 0.006 0.011 0.001 0.002
Conley (0.59km) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table B.4: Effect of bike share on PM concentrations

PM
(1) (2) (3) (4)

On-car-route -0.0097 -0.0320 -0.0091 0.0538∗∗∗

(0.0262) (0.0260) (0.0174) (0.0184)

Baseline controls ✓ ✓ ✓

Cell FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Year-Community district FE ✓
Year-Borough FE ✓

Mean concentration pre-treat. 9.433 9.441 9.441 9.441
% mean concentration pre-treat. -0.103 -0.339 -0.096 0.569
Observations 91,710 90,898 90,898 90,898
R2 0.978 0.979 0.992 0.984
Within R2 0.000 0.018 0.003 0.016
Conley (0.59km) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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C Alternative treatment definitions

In this appendix, perform the TWFE estimations using alternative treatment definitions.

C.1 Stations within 300m of cell

Table C.1: Effect of bike share on NO concentrations

NO
(1) (2) (3)

Station -3.8915∗∗∗ -2.1059∗∗∗ -1.5368∗∗∗

(1.1872) (0.5868) (0.5721)

Baseline controls ✓ ✓ ✓

Cell FE ✓ ✓ ✓
Year FE ✓ ✓ ✓
Year-Community district FE ✓
Year-Borough FE ✓

Mean concentration pre-treat. 20.353 20.353 20.353
% mean concentration pre-treat. -19.120 -10.347 -7.551
Observations 90,898 90,898 90,898
R2 0.910 0.960 0.937
Within R2 0.089 0.028 0.021
Clustered (Community district) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C.2: Effect of bike share on NO2 concentrations

NO2
(1) (2) (3)

Station -1.4994∗∗∗ -0.4007∗∗∗ -0.5309∗∗∗

(0.3277) (0.1384) (0.1807)

Baseline controls ✓ ✓ ✓

Cell FE ✓ ✓ ✓
Year FE ✓ ✓ ✓
Year-Community district FE ✓
Year-Borough FE ✓

Mean concentration pre-treat. 20.007 20.007 20.007
% mean concentration pre-treat. -7.494 -2.003 -2.654
Observations 90,898 90,898 90,898
R2 0.979 0.994 0.985
Within R2 0.122 0.018 0.028
Clustered (Community district) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table C.3: Effect of bike share on BC concentrations

BC
(1) (2) (3)

Station -0.0404∗∗ -0.0170∗ -0.0153
(0.0162) (0.0098) (0.0093)

Baseline controls ✓ ✓ ✓

Cell FE ✓ ✓ ✓
Year FE ✓ ✓ ✓
Year-Community district FE ✓
Year-Borough FE ✓

Mean concentration pre-treat. 1.017 1.017 1.017
% mean concentration pre-treat. -3.978 -1.668 -1.506
Observations 90,898 90,898 90,898
R2 0.957 0.979 0.970
Within R2 0.015 0.002 0.003
Clustered (Community district) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C.4: Effect of bike share on PM concentrations

PM
(1) (2) (3)

Station -0.1002 -0.0942∗∗ 0.0090
(0.0788) (0.0419) (0.0514)

Baseline controls ✓ ✓ ✓

Cell FE ✓ ✓ ✓
Year FE ✓ ✓ ✓
Year-Community district FE ✓
Year-Borough FE ✓

Mean concentration pre-treat. 9.441 9.441 9.441
% mean concentration pre-treat. -1.061 -0.997 0.095
Observations 90,898 90,898 90,898
R2 0.979 0.992 0.983
Within R2 0.022 0.007 0.014
Clustered (Community district) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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C.2 Cells within the convex hull

Table C.5: Effect of bike share on NO concentrations

NO
(1) (2) (3)

Convex polygon -2.7534∗∗ -0.1855 -0.3325
(1.0736) (0.6438) (0.5012)

Baseline controls ✓ ✓ ✓

Cell FE ✓ ✓ ✓
Year FE ✓ ✓ ✓
Year-Community district FE ✓
Year-Borough FE ✓

Mean concentration pre-treat. 20.353 20.353 20.353
% mean concentration pre-treat. -13.528 -0.911 -1.633
Observations 90,898 90,898 90,898
R2 0.907 0.959 0.936
Within R2 0.058 0.008 0.008
Clustered (Community district) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C.6: Effect of bike share on NO2 concentrations

NO2
(1) (2) (3)

Convex polygon -1.1882∗∗∗ 0.0989 -0.2136
(0.3380) (0.1864) (0.2059)

Baseline controls ✓ ✓ ✓

Cell FE ✓ ✓ ✓
Year FE ✓ ✓ ✓
Year-Community district FE ✓
Year-Borough FE ✓

Mean concentration pre-treat. 20.007 20.007 20.007
% mean concentration pre-treat. -5.939 0.494 -1.067
Observations 90,898 90,898 90,898
R2 0.979 0.994 0.985
Within R2 0.100 0.010 0.016
Clustered (Community district) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table C.7: Effect of bike share on BC concentrations

BC
(1) (2) (3)

Convex polygon -0.0379∗∗ -0.0170∗∗∗ -0.0167∗

(0.0143) (0.0051) (0.0093)

Baseline controls ✓ ✓ ✓

Cell FE ✓ ✓ ✓
Year FE ✓ ✓ ✓
Year-Community district FE ✓
Year-Borough FE ✓

Mean concentration pre-treat. 1.017 1.017 1.017
% mean concentration pre-treat. -3.729 -1.669 -1.638
Observations 90,898 90,898 90,898
R2 0.957 0.979 0.970
Within R2 0.015 0.002 0.004
Clustered (Community district) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table C.8: Effect of bike share on PM concentrations

PM
(1) (2) (3)

Convex polygon -0.0353 0.0399 0.0748
(0.0802) (0.0378) (0.0535)

Baseline controls ✓ ✓ ✓

Cell FE ✓ ✓ ✓
Year FE ✓ ✓ ✓
Year-Community district FE ✓
Year-Borough FE ✓

Mean concentration pre-treat. 9.441 9.441 9.441
% mean concentration pre-treat. -0.374 0.423 0.792
Observations 90,898 90,898 90,898
R2 0.979 0.992 0.984
Within R2 0.018 0.004 0.018
Clustered (Community district) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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D Monetary valuation of benefits

In this section, I perform a back-of-the-envelope calculation of the health monetary
value associated with the observed decrease in NO concentrations. The impact of NO
on health endpoints (e.g., emergency department (ED) visits, mortality) is given by
concentration-response (CR) values found in the epidemiological literature, which are
then converted to monetary values using survey and regulatory data for each endpoint. I
conclude by benchmarking these benefits with the cost paid by end-users.

D.1 Valuing health benefits

I start with the average treatment effect of bike share on NO in my preferred specification,
found in Table 3 column 2. I then collect CR values of NO on (1) mortality and (2)
asthma ED visits and hospitalisations. The CR value on mortality is obtained from
Meng et al. (2021), a meta-analysis using studies in 398 cities around the world. I use
the US-specific estimates for total mortality for a 10µg increase in NO. From Zheng,
Ding, et al. (2015) I obtain the CR value of NO for visits to the ED and hospitalisation
of people affected by asthma.

In order to compute the changes in health outcomes attributable to the treatment,
we need to apply the CR values to health outcomes before treatment. I obtain mortality
at the community-district level from the NYCDOH Vital Statistics data sets,25 and
asthma ED visits and hospitalisations at the community-district level from the NYCDOH
Environment & Health Data Portal.26 I take the yearly average of the three outcomes
over the five years prior to the first bike share implementation in 2013.

The TWFE estimator provides the average treatment effect on the treated group,
which is the total effect over the whole period for all units treated at some point. In
order to compute health benefits, I select community districts that fall in the area of the
treated group. Community districts are fairly large geographical units and some of them
are barely covered by the treatment area. To avoid overestimating health benefits, I select
only those that have more than 30% of their area treated by the bike share treatment.

Summing up baseline outcomes for all eventually treated community districts, I can
now compute how much bike share changed those outcomes in the post-treatment period.
I use the formula described in 6 to compute the change in outcomes attributable to
treatment:

∆Out =
CR

10
ATT ·Out t̄ (6)

where Out is the outcome of interest, CR the concentration-response value, ATT the
average treatment effect on the treated, and Out t̄ the average outcome in period before

25https://www.nyc.gov/site/doh/data/data-sets/death-micro-sas-datasets.page, accessed
2022-11-21.

26https://a816-dohbesp.nyc.gov/IndicatorPublic/, accessed 2022-11-21.
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treatment t̄. Computing the changes for mortality, ED visits and hospitalisations, I find
that bike share avoided 33 deaths, 1,122 ED visits and 412 hospitalisations through the
reduction in NO concentrations.

To transform these health outcomes into monetary values, I obtain the value of
statistical life from EPA (2010), and the average cost of ED visits and hospitalisation
from the Blewett et al. (2021). I convert all dollar amounts to 2019 equivalents using the
Consumer Price Index retroactive series from the US Bureau of Labor Statistics.27

Finally, I multiply the changes in health outcomes by their monetary value. The
deaths avoided by bike share are valued at $320 million, and the prevented ED visits and
hospitalisation of asthma-affected people amount to $1.2 and $6.2 million, respectively.
In total, the back-of-the-envelope calculation shows that the deployment of bike share in
NYC since 2013 saved a total of $327 million due to the reduction in NO concentrations.

D.2 Benchmarking monetary benefits

How large are these monetary benefits? To shed light on this question, I compare
the monetary benefits associated with NO decrease with the price paid by end-users.
Combining trip record data and monthly reports, I find that the mean price per ride
weighted by the number of trips is around $1.81.28 The total number of trips taken on
the bike share system during the sample period amounts to 98,952,256 trips. Dividing
the monetary benefits obtained in the previous section by the total number of trips yields
the average monetary benefit per trip of $3.31.

For an average bike share trip, end-users pay $1.81 but provide $3.31 in health
benefits. If costs and benefits were perfectly internalised and no other costs or benefits
existed, end-users should be paid the benefits they produce minus the cost to run the
service, which we can assume is represented by the average cost per ride. In the present
case, end-users should be paid 3.31− 1.81 = $1.50 per ride for the health benefits they
provide.

27Stewart (1999), https://www.bls.gov/cpi/research-series/r-cpi-u-rs-home.htm, accessed
2022-11-21.

28A majority of trips are made by annual subscribers, but there exists no published figure on the
number of trips per annual member. Using a selection of busy and slow bike share months, I collect the
number of trips made by members, which I divide by the number of active members that month to get
an average number of trips per member for that month. Dividing the price of an annual subscription
by 12 (i.e., month-equivalent price) and by the average number of trips by members yields the average
price per trip for members that month. For casual trips (no membership), I use the price of a single
45-minute trip. This approach likely underestimates the average price per trip for casual rides as it does
not take into account overtime charges. However, the share of casual trips being low (15% at most), this
should not affect the estimates substantially.
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